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Abstract
Self-diffusion in a model system of rod-like particles is studied in the smectic (or lamellar)
phase. The experimental system is formed by a colloidal suspension of filamentous fd virus
particles, which allows the direct visualization at the scale of the single particle of mass
transport between the smectic layers. Self-diffusion takes place preferentially in the direction
normal to the smectic layers and occurs in steps of one rod length, reminiscent of a
hopping-type of transport. The probability density function is obtained experimentally at
different times and is found to be in qualitative agreement with theoretical predictions based on
a dynamical density functional theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The self-organization into liquid crystalline states is a
field of intensive research, both theoretically [1] and
experimentally [2, 3]. Recently, the dynamics of such
self-assembled anisotropic media has been investigated in
particular by the determination of self-diffusion coefficients
in different kinds of mesophases [4]. These measurements
have been performed with experimental techniques probing
the samples collectively (ensemble averaged), such as in
nuclear magnetic resonance (NMR) for thermotropic [5] and
amphiphilic [6] liquid crystals, and fluorescence recovery after
photobleaching (FRAP) for lyotropic (colloidal) systems [7].
Only a few studies have been performed where dynamical
phenomena are tracked at the scale of the single anisotropic
particle [8, 9].

In this work, the model system of aqueous dispersion
of filamentous virus fd particles, which exhibit a highly
monodisperse length and width distribution and the ability
to be visualized individually by fluorescence microscopy, has
been used to explore the time-dependent phenomena in the

smectic phase. In this lamellar mesophase, the particle density
is quasi periodic in one dimension parallel to the long axis
of the rods, while the interparticle correlations perpendicular
to this axis are short-ranged (fluid-like order). In the smectic
phase of fd virus suspensions, we investigate experimentally
the process of interlayer diffusion or permeation, first predicted
by Helfrich [10], corresponding to the jump along the long
axes (or director) of single rod-like particles between adjacent
smectic layers [9].

Here we first show that fd dispersions undergo a first
order nematic–smectic and smectic–columnar phase transition,
by using differential interference contrast microscopy. X-ray
scattering is used to confirm that, within the smectic layers,
rods show a Lorentzian radial distribution, typical for a liquid-
like ordering, but also for a glass. Having established the
structural characteristics of the smectic phase, fluorescence
video microscopy is employed to study self-diffusion in this
lamellar mesophase. Although particles can supposedly diffuse
freely within each liquid-like layer (with diffusion coefficient
D⊥) but must overcome a free energy barrier to jump between
adjacent layers (with diffusion coefficient D‖), surprisingly,
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Figure 1. Phase coexistence of the different mesophases observed in aqueous suspensions of fd rod-like viruses by differential interference
contrast microscopy. Coexistence of the (a) columnar (left) and smectic (right) phases and of the (b) smectic (left) and chiral nematic (right)
phases. The scale bars indicate 10 μm in both cases.

the diffusion through the smectic layers is shown here to be
much faster than the diffusion within each liquid-like layer,
i.e. D‖/D⊥ � 1. This behaviour will be analysed in terms
of a recently developed time-dependent density functional
theory [11].

2. Experimental details

2.1. Materials and methods

The system of rods used in this work consists of filamentous
bacteriophages fd, which are semi-rigid polyelectrolytes with
a contour length L = 0.88 μm, a diameter d = 66 Å,
a persistence length of 2.2 μm, and a molecular weight of
MW = 1.64 × 107 g mol−1. fd was grown using the XL1-Blue
strain of E. Coli as the host bacteria and purified following
standard biological protocols [3]. In this study, the ionic
strength has been fixed at I = 20 mM by a dialysis of fd
suspensions against a TRIS-HCl–NaCl buffer at pH = 8.2.
At this pH, the fd charge density is about 10 e nm−1. The
virus concentrations were measured using spectrophotometry
with an absorption coefficient of 3.84 cm2 mg−1 at 269 nm.
Video fluorescence microscopy has been used to monitor
the dynamics of individual labelled colloidal rods in the
background of a smectic mesophase formed by identical but
unlabelled rods, where about one fd rod out of 104 has been
labelled with the dye Alexa-488 (Invitrogen). The colloidal
scale of the fd bacteriophage enables the imaging of individual
rods by fluorescence microscopy, as well as smectic layers by
differential interference contrast (DIC) microscopy [3].

2.2. Phase diagram and structural investigations

Suspensions of fd rods in aqueous solution form several
lyotropic liquid crystalline phases with increasing particle
concentration, ranging from the chiral nematic (N*) [12] via
the smectic (Sm) [9, 13] to columnar (Col) and crystalline
phases [14]. The existence of a smectic phase in suspensions
of hard rods is an evidence of the high monodispersity in the
particle length and therefore of the model system character
of such filamentous viruses [15]. A conceptually appealing
intuitive explanation for the appearance of the smectic phase

was given by Wen and Meyer [16], and it goes as follows.
In the uniaxial nematic phase, neighbouring rods overlap each
other by random amounts along their principal direction. This
creates volumes at the end of every rod, which are accessible
only to that rod but not to any other rod. In the smectic
phase, with rods distributed in layers, the random overlapping
of rods along their length is avoided, so these excluded volumes
disappear, thereby increasing the free volume of the system.
Hence, though positional entropy is lost at the transition to the
smectic phase, freely available volume is gained and therefore
the overall configurational entropy increases.

At I = 20 mM, the typical virus concentration for the
smectic phase to occur is 115 mg ml−1, which corresponds
to a volume fraction φ = 0.13. The volume fraction has
been calculated with the bare virus diameter, and not with
an effective diameter taking into account the electrostatic
interactions between rods. Figure 1 presents the phase
coexistence of the smectic phase with the chiral nematic
and columnar mesophases, respectively. Both Col–Sm and
Sm–N* phase transitions are first order, and they are fully
reversible by dilution or concentration of the sample. Note
that a sufficiently pronounced particle length polydispersity
has been shown to rule out the smectic phase [15] and that
rod flexibility also destabilizes the smectic organization [17].
Another consequence of the virus flexibility is that the smectic
layer spacing is very close to the particle length [18, 13].

In order to study the nature of the positional order
within the smectic layers, small angle x-ray scattering (SAXS)
has been performed at the ESRF-ID02 beamline (Grenoble,
France). Figure 2(a) presents the average radial intensity
in the wavevector range suitable for probing the interaxial
organization of the rods. The position of the Bragg peak is
q100 = 0.0492 Å

−1
, which corresponds to a distance between

rods of dinter = 4π/
√

3q100 = 147 Å. In a conventional liquid
the positional correlations decay exponentially with distance,
giving a Lorentzian scattering profile of the Bragg reflections.
A line shape analysis of the first order Bragg peak has been
performed as shown in figure 2(b): a Lorentzian distribution
almost perfectly fits the data. A positional correlation length of
ξ = 2π/FWHM = 540 Å is found, which corresponds to an
inter particle correlation extending up to about four neighbours.
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Figure 2. (a) Average radial intensity as a function of the scattering wavevector, probing the inter-rod structure within the smectic layer.
(b) Lorentzian fit (solid line) of the first order Bragg reflection (open symbols) which are not resolution limited. The dashed line shows the
subtracted linear background.

Figure 3. (a) Overlay of differential interference contrast and fluorescence images, showing the smectic layers and two fluorescently labelled
particles, and the schematic representation of the jump of rod-like particles between adjacent smectic layers. The layer spacing is
L � 0.9 μm. (b) Displacement of a given particle in the direction parallel (red line) and perpendicular (black line) to the normal of the
smectic layers. The horizontal green lines indicate the residence time, i.e. the time for which one particle stays in a given layer.

This demonstrates that the structure of the order is liquid-like
in the layers of the smectic phase.

2.3. Self-diffusion of single particles

Figure 3(a) shows an example of images of a single region
where both DIC and fluorescence techniques are combined:
some rods jump between two layers while others remain within
a given layer. The trajectory of one of the rods is plotted in
figure 3(b) in the direction parallel (z) and perpendicular (x)
to the director. The main result of our measurements is the
following: diffusion between the smectic layers takes place
in quasi-quantized steps of one rod length, and the diffusion
within the smectic layer is extremely slow.

The ‘hopping-type’ diffusion is the consequence of the
underlying ordering potential of the smectic phase and the
vacancies available in adjacent layers. It shows that the
mass transport between the layers is a discontinuous process,
as evidenced by the self-Van Hove function G(z, t) in
figure 4(a) [19], which is defined as the probability density for
a displacement z during a time interval t :

G(z, t) = 1

N

〈
N∑

i=1

δ[z + zi (0 ) − zi (t)]
〉

. (1)

For an uniform fluid of Brownian particles, a smooth
Gaussian distribution that smears out over time is expected for
the self-Van Hove function. In the smectic phase, however,
G(z, t) shows distinct peaks exactly at integer multiples of the
particle length (and therefore of the layer thickness), as also
inferred from visual inspection of the rod trajectories (figure 3).

2.4. Mean square displacement

The overall mean square displacement (MSD) of rods parallel
and perpendicular to the director of the smectic and nematic
phases is plotted in figure 4(b). Here parallel MSD is scaled
by the length of the rod L, while the time is scaled by the
time it takes to diffuse one rod length in the nematic phase,
i.e. τL = L2/Dnem

‖ . Similarly, the perpendicular MSD is
scaled by the rod diameter d , while the time is scaled by the
time it takes to diffuse one rod thickness in the nematic phase,
i.e. τd = d2/Dnem

⊥ . The time evolution of the MSD given by
〈�r 2(t)〉 ∼ tγ provides the diffusion exponent γ : γ < 1 is
characteristic of a sub diffusive behaviour, while γ > 1 is
referred to as super diffusion. The parallel motion is close to
be diffusive in the (chiral) nematic phase (γ = 0.95) close to
the N*–Sm phase transition over the whole studied time range,
i.e. over several rod lengths. However, the parallel motion in
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Figure 4. (a) Evolution of the self-Van Hove function at different times. The functions are normalized to one, the z-axis is scaled by the
smectic layer thickness L . (b) Log–log representation of the scaled mean square displacement (MSD) parallel and perpendicular to the
director in the nematic and smectic phases (see legend) versus the scaled time. The dotted lines indicate the time the rods diffuse one rod
length. The dashed lines represent the numerical fits by a power law.

the smectic phase is significantly sub diffusive for t < τL :
γ = 0.77, while it is diffusive for t > τL (γ = 0.96). The
perpendicular motion is, in both cases, strongly sub diffusive.
In the nematic phase γ = 0.68, while in the smectic phase
once again two regimes can be distinguished: γ = 0.38 for
t < 1000τd and γ = 0.57 for t > 1000τd .

3. Theoretical details

In order to theoretically study the diffusion in uniform and non-
uniform complex fluids, a general method was put forward
allowing for the straightforward calculation of Van Hove
correlation functions within dynamical density functional
theory [11]. Because the fd virus filaments can be considered
as long, thin rods of high stiffness (see section 2.1) that are
strongly aligned in the nematic and smectic phases, one can
in a first approximation neglect the orientational degrees of
freedom [20] and model a liquid crystalline fd virus dispersion
as a fluid of aligned hard rods of an effective length and
diameter. Within the dynamical density functional theory we
next invoke the second virial approximation [21], which is not
quite exact at the densities where the smectic phase is stable
but contains the relevant physics, and numerically solve the
relevant kinetic equations that link the self-diffusion of a test
particle to the collective diffusion of all the other particles in
the system.

In figure 5 we compare the self-Van Hove correlation
function G(z, t) obtained from our model calculations with
the measurements displayed in figure 4. Here L denotes the
smectic layer spacing and τL is the parallel diffusion time τL =
L2/Dshort

‖ , where Dshort
‖ is the short-time parallel diffusion.

The model parameters for the smectic state in the calculation
were chosen such that the smectic ordering potential barriers
correspond to those determined in the experiment from a
Boltzmann weighting of the density profiles [9].

Figure 5 shows that even a calculation at the level
of the second virial approximation can account for the

Figure 5. The self-Van Hove correlation function G(z, t) obtained
within the dynamical density functional calculation based on a highly
idealized second virial model of perfectly aligned, perfectly rigid
hard rods, indicated by the blue dotted lines, exhibits the qualitative
features of the measurement (red solid lines). Here L is the smectic
layer spacing and τL is a parallel diffusion time. The quantitative
differences can be attributed to an overestimation of the
compressibility and the neglect of the particle bending flexibility
within the theoretical model.

qualitative features of the non-trivial, hopping-type diffusive
behaviour of rod-like particles along the director from one
smectic layer to the next. The quantitative differences
between the measurements and theory can be understood by
realizing that the second virial approximation overestimates
the compressibility of the fluid. Indeed, a rod in the model
fluid can, compared to a real fd virus, more easily squeeze
into a neighbouring layer, which increases the decay rate in
the central region around z = 0 and the growth rate of the first
side peaks around z = ±L in figure 5. The height of the peaks
around z = ±2L is associated with the cooperative movement
of a rod from the central layer via a void in the first layer to
the second layer, which is more pronounced in the experiment
than in the calculation.
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4. Discussion

Anomalous sub diffusive behaviour has often been observed
in systems where diffusion involves an initial waiting time,
e.g. following the release of a test particle from a temporary
cage caused by the presence of other particles [22]. It stands
to reason that this ‘cage escape’ might be at the root of
the observed sub diffusive behaviour for both parallel and
perpendicular diffusion observed in the smectic phase. For
parallel diffusion of rods the cage is actually formed by the free
energy barrier imposed by the smectic layers, superimposed
on which is the effective barrier from the enhanced number
of particles that cage the central (test) particle [11]. Indeed
in both the experiments and the calculations (see also figure
3(a) of [11]) the parallel behaviour is sub diffusive for t <

τL , related to the crossover between short-time and long-time
diffusive behaviour.

The anisotropy in the diffusivities, D‖/D⊥, which is
about 20 in the nematic phase [8], increases in the smectic
phase within the measured time range as a result of the
pronounced sub diffusivity of the perpendicular motion (as
indicated by the decrease of γ ). Since this sub diffusive
behaviour lasts for the whole studied time range, i.e. thousands
of rod diameters, it seems that the rods in the layers are glass-
like rather then liquid-like. This observation is apparently
opposite to the trend found for thermotropic liquid crystals,
where usually D‖/D⊥ decreases due to an Arrhenius form of
the diffusion constants [4, 5]. Also note that preliminary results
by Dogic on the self-diffusion of fd virus particles in single
lamellar membranes indicate that without neighbouring layers
perpendicular diffusion is much faster [23].

The cause of the experimentally observed perpendicular
sub diffusive behaviour is not clear a priori. The theoretical
calculations show diffusive long-time behaviour in the
perpendicular direction; it should be realized, however, that
both flexibility and orientational degrees of freedom are not
taken into account in the theory, both of which will result
in significant excluded volume effects. Thus, the dominant
mode of perpendicular diffusion could be a repetition-like
parallel motion of the rod along the long axis to escape its
locally excluded volume, similar in nature to what is observed
for polymers in the dense melt, for which typically γ =
0.5 [24]. Including these effects could also help to explain
the discrepancy between the envelope of the measured and
calculated Van Hove functions plotted in figure 5, since the
experimentally observed ∼z−1 behaviour could be related to
the relaxation of voids once a rod has jumped between two
adjacent layers.

5. Summary

We have shown by means of real-space video fluorescence
microscopy that the diffusive transport of particles between
the layers of a smectic lyotropic colloidal liquid crystal is
a discontinuous process that occurs in steps of one layer
spacing. Our approach using the dynamical density functional
theory, which is found to describe qualitatively the underlying
dynamics, points out the importance of the existence of free

energy barriers between the smectic layers. This gives rise to
a kinetics where particles hop from one layer to the other with
a time scale which is dictated by the height of the barriers. At
shorter time scales, the particles remain trapped in the smectic
layers and perform a diffusive ‘bobbing’ motion about the local
minimum of the self-consistent molecular field.
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